Something Old, Something new. Joystick Upgrade!

Some time ago, I ordered a Joystick from Retroradionics.

In Transparent Black! Has a few nice features, such as Autofire on two buttons, and togglable mode for C64 or Atari for example.

Inside, there’s a PCB that looks quite bare

So, I did gone glitz it up a little.
I figured that a joystick could do with some LED’s, there’s plenty of space inside for big ones!

and, maybe it could have some extra functionality

I started here – Knocking up a schematic – this is maybe rev 20!

So, after knocking up a schematic, I measured up and drew a PCB , well, had a little help from the developer of the joystick who sent me some dimensions of his PCB to get started with!

Always print 1:1 before ordering!
Continue reading “Something Old, Something new. Joystick Upgrade!”

Super LED Blinkenator 2000 – Beta 8 Ordered

Been a busy few weeks here at Bleugh.Biz industries, working ridiculous hours at my day job, keeping kids from murdering each other during the evenings……But, i’ve been getting some good tinkering time in.

Some very good progress has been made! – and this is the board that’ll hopefully, finally, once and forever physically fit perfectly

Some Notable changes

  • Balls! – A revised J15 connection method that’ll provide a simple and very robust connection method
  • Spacings – The holes for the LED inserts have been altered a little to allow easier assembly. It’s still mildly fiddly but easy enough.
  • Fixtures – The J15 are has now two horizontal slices cut into it – this provides a spring mechanism for the balls. it helps to PCB distortion locally without warping all of the board from Next PCB to inserts
  • Holes – The whole board is now held with press fit type connection. The two screws holding the Next PCB are removed and replaced with two new ones. this holds the Blinkenator board to the next PCB and the Next PCB to the case. The two holes for the screws have been changed to 5mm!
  • Positions – The JST style connectors have been re-located and changed from Right angle to Vertical. Now the board’s mounted above the next board there’s plenty of space underneath. The path from the Arduino USB connector is now also free so you can tuck a cable into the board permanently
  • LED’s – Moar Bling! Each insert location now has a LED colour on the main board. No real purpose other than to look great and provide the end users with some assurance that the board is powered up when they do their first tests with a USB cable outside of the Next
  • ESP-01 – CPU_RST has been changed to a JST style connector to make ease of fitting. This whole feature is still highly experimental and may not make it into final production (if it doesn’t work, there’d be no point!)
  • Inserts – There’s now a 0.56mm gap between the jumpers – to fit a 0.6mm wide PCB!. makes a nice snug fit. and easy also to work with – simply trial fit once when you receive your board, that’ll loosen them up. remove and re-fit into the Next
  • Jumpers – Lots of experimental jumpers! GPIO to arduino, TX/RX to arduino, DB+ integration enabling / passthrough…….and some secret sauce also
  • THICKNESS – The board’s back to a phat 1.6mm thick. this provides significant stability to the jumpers that hold the inserts in place. Much easier to repeatedly get them soldered straight when assembling
  • Components – The whole board’s been rationalised for component price – and where possible using @JLCPCB’s BASIC library – that saves quite some amount in production prices as non Basic items incurr an engineering fee per component. Previously 3/4 the components were Extended, now 3/4 are Basic!
  • Silkscreen – Tidied up and made a bit more slick……..

I’m sure there’s a few more changes i’ve missed, but that’s the important stuff.

Where from here……….IF this last board plugs in, fits well, i’ll be sending out to the key Dev team. I can then kick back, relax a little and start again playing with the software side of things, Both Next side and Arduino side!.

I’ll eventually also need to consider switching over the whole board to SMT, or as much as possible. I’m not that daunted by this as there’s quite a number of ways this can be achieved, including just putting the 32U4 straight on-board, or considering changing the micro type entirely. After all, the main reason i’m using a 32u4 is that it’s cheap, Arduino compatible, has USB built in. All those things give a great ‘dev board’ capability that people can use to simply plug in and tweak!

Another C64 Mini keyboard kit success

A very talented Hans Liss from the Facebook group – TheC64 Mini has make a perfect assembled kit.

Drool over the photos below

Note the extras like the hacked up USB hub to make it slimline

The Extra UART connector that he’s added, and the nigh on perfect Keybaord keycap butchery!

Hans also helped by pointing out a few errors i’ve made with the original firmware sent out with the kits. I spent a couple of weeks figuring out how to fix it and have a new HEX file for those that want it.

There’s still some ‘not quite exactly commodore’ quirkery happening – which i’m working on, but i’ll bet that 99% of you won’t be able to figure it out. I’ve only found out due to Hans’s extensive knowledge of the C64 inner workings and also me, downloading the original user manual for the Commodore 64.

C64 Mini Keyboard Kit – New Firmware available

New Firmware upgrade available

It’s been an intense and frustrating few months trying to figure out QMK in spare time here and there – today, something ‘clicked’ and…..I’ve made a new keymap.

Please email me – KEYBOARD AT BLEUGH DOT BIZ for a new HEX file. also happy to help you flashing the thing with the Arduino IDE (it’s quite easy!)

Why I developed a new keymap

A couple of users have reported that the key mapping is a little wrong when plugged into the mini.

By ‘key mapping’ it means, when you press a key, or combination of keys, you don’t get the character that’s shown on the keycap.

Most people will know this if they’ve ever used a US keyboard on a UK computer or vice versa, that Shift and 2 gets annoying after a while when you’re trying for the @ sign!

So, I’ve dun fixed those minor niggles that people observed….AND, i’ve gone and added quite a bit more!

Continue reading “C64 Mini Keyboard Kit – New Firmware available”

Anycubic Photon Mono Teardown 3

Only some thoughts on this one –

The PCB inside the Mono looks to be a custom PCB.

However, it’s widely known that Anycubic uses Chitu Systems drivers and panels

When I cracked open the Mono – I found really only 3 chips of significance…

An ANLOGIC FPGA – EF2L45LG144B –

and

GD32F307 Arm Cortex M4 controller

Having a nose around ChiTu’s website found this little device – The ChiTu L M1

https://home.cbd-3d.com/hardware/controller-board/chitu-l-m18-9-4k-monochrome/

Link to User Manual –

Have a look at page 12 / 73 and what do you spot ? – Item 8 – an ANOLOGIC EL2F Series FPGA Chip!!

AND….an STM32F407ZET6

Cortex®-M4 32-bit RISC core operating at a frequency of up to 168 MHz.

Sound familiar?

GD32F307 Arm Cortex M4 controller – Cortex®-M4 Core @ 120 MHz

What this means? – No idea 😛

BUT, what this could mean…

1- The Anycubic Photon Mono board is possibly capable of using a 4K LCD

also, i’ve spotted that Chitu systems sells an ESP8266 module specifically for their boards – it could be that Anycubic plans on selling their own, or just goofed up with the polarity of the header on the board!

And, finally, after all the above, that i’m going to publish anyway, i’ve also spotted

https://shop.cbd-3d.com/product/chitu-l-k1-controller-board-with-32bit-tmc2209-for-lcd-msla-3d-printer/

Which looks practically identical, also has the FPGA and the ARM board and is only 2k!, D’oh!

TheC64 mini Keybaord kit – a successful first build by a user

Batches 4 and 5 have started arriving! Here’s some pictures from a happy user who only received it a couple of days ago 🙂

Great soldering job 🙂

Good soldering job on the rear too.
Great use of the heat shrink to tidy the invisible mod up!

Anycubic Photon Mono Teardown – Part 1

A first look at the guts

I got myself a Resin Printer!

So, Naturally, before printing with it, I attack it with a screwdriver – or hex driver in this case……..

Here’s the first tear-down and initial dismantling of the brand new Anycubic Monochrome Resin Printer

Here’s the light source

And, some more photos..

Continue reading “Anycubic Photon Mono Teardown – Part 1”

C64 mini keyboard kit – keycap butchery success!

Have been promising a long time to do this, so finally took a few hours to butcher another mini!

Some views are excellent
Another great view
And the worst view

As you can see, for the most part, it’s pretty good, but NOT perfect

what I’ve discovered…..

2 part epoxy works best

Each keycap row is a different depth – the top one needs the least glue, row 3 the most

My errors here. I used a hard plastic glue from Bostick. it doesn’t grip well enough on the top of the keyswitches. I glued everything, waited a few hours, half the keycaps didn’t stick

glued the rest, waited, half again didnt’ stick…rinse and repeat about 6 times, adding more glue till finally they all stuck.

The 2 part epoxy stuck fast and hard! – but I used too much.

The repeated adding of more glue caused the multiple key levels you can see in the picture

I’ll try one more time I think!

The Blinkenator Part 32768

With a successful 2nd Kickstarter – The Spectrum Next will have between 8,000 and 9,000 users.

Lets Dream a little and imagine a Bright world where all the users have a Super LED Blinkenator 2000 installed….

9000 users = nearly 40,000 inserts to be made!.

lets say just 10% want the blinkenator, I still have to make nearly 1000 of the things.

I’ve been researching a little and identifying bottlenecks to SUCCESSFULLY produce and deliver my board in those quantities

There’s some scary numbers!

So, I’m now pressing forward with TWO designs. one design, the one you’re all familiar with, suitable for small time production in small batches here and there on my weekends, only ever endeavouring to sell maybe a 150 units ever

and the second, a ‘mass produced’ item that requires minimal ‘hands on’ time from me to deliver, but will require some significant outlay up front.

The pictures above are a first run result of my Design For Manufacture for the inserts….A different injection mould, possibly 2 parts, maybe 1 and using a flexible PCB!

some key notes……..

Advantage – no connector soldering needed on my part – currently I’m soldering 16 cheap ‘bridges’ to each main board. with this insert, someone will be soldering 8 SMT FPC style connectors

Advantage – it’s likely that this design will be easier to make ‘injection moulding’ manufacturable. the existing design is tricky, but not impossible

Advantage – FPC connectors are a bit more reliable and easier to use than my bridges for the end user

Advantage – FPC / flexible PCB ‘legs’ on the inserts will mean a little bit easier installation by the end user

Advantage – Uniformity of Light – This type of construction allows for a much thicker ‘top layer’ – which will diffuse the light far more. Also, more of the insert will be better lit up ‘from below’ rather than from the side that i’m currently doing.

Disadvantage – FPC connectors are more expensive

Disadvantage – Flexible PCB’s are more fragile

Disadvantage – Flexible PCB’s are more expensive than FR4 for small quantities, so prototyping ability is very limited. at The quantities I need though, there’s not that much difference

There’s more i’m sure, once the final numbers are ready, I can see if a kickstarter makes sense, it may not be financially viable if the whole thing needs to be sold at £80 each……

if I can get closer to that £50 mark, then who knows!

Spectrum Next LED inserts…..Big steps

I’ve been updating the Dev group on facebook more regularly than here

Progress has been slow but constant!, the new Jumper method of getting the LED inserts to connect to the controller works well, if a little fiddly. I think there’s some changes I can make to allow for an easier installation experience.

A big milestone also – The BETA hardware is at such a point now that i’m happy to send it to the core Dev team for actual installation inside a Next….err, except they can’t have the bottoms on as the USB cable doesn’t fit, D’oh!, another re-design needed!

AND – software – My Arduino code’s finally quite stable – Also, from the Next side of things – the i2c code is great – it runs well at 14MHZ, allowing for some interesting sequences on 8 segments…..I’ll start uploading BASIC programs in the next month or two.

Also, a kind of fork in the road….

Throughout this project, I’ve had an end goal of maybe 5-10% of Next owners owning a Blinkenator. at 3000 Nexts, that’d be maybe 150-300 devices sold over a year or two, making my beer money fund quite happy

Things recently changed……and have made me realise that I’ll probably need to step up my game a little…..

The Latest Kickstarter………. https://www.kickstarter.com/projects/spectrumnext/zx-spectrum-next-issue-2

Means that now, there’s over 8000 Nexts in the wild!.

Assuming the same targets, I’d now need to manufacture between 400 and 800 devices…

May not sound much – but at a top level, for just 800 units…….that means some big numbers…..

sourcing 3,200 Plastic inserts….

Sourcing 26,000 LED’s

and with big numbers comes Big Money….and long lead times.

IF someone landed me with an order for 800 Blinkenators tomorrow, at (say) 45 minutes per board, I’d need 600 hours to complete the order.

I have a day job that demands my attention for 160 hours a month. Wife and kids that demand me for a further 80 hours a month…then there’s the whole sleeping and eating thing..

It’d take me a year to be able to fulfil that order 😛

So, the fork in the road……….I may need to do my own Kickstarter!

I’m investigating larger scale manufacture – Full PCBA including through hole, better DFM and Plastic Injection moulding.

All that costs big up front ££…..hence the Kickstarter………is my 5-10% adoption figure massively optimistic. Is it woefully inadequate?

To have any chance at a successful Kickstarter, I need to turn this hobbyist , good quality (7/10, could do better) project into a slicker experience, a better presented finish and professionally produced, not at my dining room table package that would obtain a Crash Smash award, a solid 9.5/10 experience. I KNOW I’m capable of creating the hardware (i’ll learn the software). I’m genuinely uncertain at this time if I would be able to DELIVER that package.

Saying that, I know my limitations, I have a grasp of the fundamentals and i’m costed to the penny for small batches.

Extrapolating that upwards and figuring out where costs stand for different adoption rates is my focus now the BETA 1 boards are ready.

If 30% of Next owners buy this thing, that’s 1800 hours of ‘work’ to do. That’s a FULL TIME JOB!!

scary isn’t it. I have to create budgets that allow for an employee!!

The Beta Board – installed
close up of the new connection method for the LED’s
another closeup
A big milestone – SIX Beta Boards
8291 times a routine ran from Basic without crashing at 14MHZ!!

C64Mini keyboard kits shipped!

First batch of 15 kits shipped!

Postage on most was actually slightly cheaper than last time! But the two heaviest ones were more, the largest one was quite a bit more than anticipated…so it all averaged out ok…

One repeat customer has a couple of freebies, only one assembled this time!

Also my first ever customer finally will have a spare kit and some stuff to practice with 🙂

Next small batch is coming as soon as the 20cm USB cables arrive.

If you want a kit without the short, tidy looking USB cables then shout and I’ll do a small discount 🙂

Amusing story and reversed switches on the C64 mini keyboard kits

Correct orientation of the switches
Correct orientation from the top. (Except the shift lock…oops! That’s why I put extra switches in :-p)

A funny story about multi sourcing components and the importance of testing before shipping!

I used a supplier on Aliexpress to purchase a few thousand switches in a few orders over a few months but their prices went up quite drastically after the last order (doubled!!) they weren’t the cheapest to start with but were reliable and friendly, worth the extra ££

I found another supplier who did a good deal for a full bag of 4000! Ordered them and waited, very quick delivery and friendly also (will buy again!)

I built my first test new keyboard with the new PCB and switches

It didn’t work. Well, actually, it did! Work perfectly…but in reverse :-p …..

If you mashed every key simultaneously then only released the key you want to press….it worked!! Yeah, the supplier sent me 4000 ‘inverted’ switches! My fault for not checking prior to ordering, they ‘look the same’ so ‘must be the same’ was a wrong assumption on my part! (At least they all weren’t the shift lock type!!)

It’s a VERY easy fix though (found after several panicked hours of testing and building Keyboards)…rotate the switch 180 degrees and it’s perfect!

In each kit I’ve included a small errata note and list of basic instructions to help. It’s an annoyance but for you guys it really just means the silk screen doesn’t quite match the switch orientation so just ask first. Look at the pictures and of any doubt, email/messenger/twitter/Reddit me 🙂

C64 Mini Keyboard kits, ready to go :-)

I’ve a small batch of 14 kits assembled and ready to post 🙂

The ‘slightly open’ ones are waiting their 3D printed inserts which are taking about 6.5 hours for 3 right now 🙂

Send me a message if you are reading and would like one.

I have enough parts to make 50 kits all up, except for the USB cables – I’ve lost a large bag of them somewhere so have ordered more 🙂

The Spectrum Next LED Inserts

The spectrum Next has a new Kickstarter! Currently sitting about 1.2 MILLION!!

And, the professionally produced LED inserts PCB’s have arrived at Bleugh.Biz HQ

Tiny! That’s a British 10p
The Resin printed plastics fit perfectly

One slight error on my part, I forgot to ask them to send individual pcb’s, meaning I have to hand cut out 600+ of them :-p

But, they Fit and give me back a tiny amount of space for me to make the walls of the inserts thicker…

Happy!

The Super LED Blinkenator 2000 progress…

This is the inserts being ‘mass produced’ at a PCBA manufacturer:-)

I’ve purchased a reel of 5000 LED’s and paid for them to make and solder them to as many boards as they can…which should be about 620 odd

Continue reading “The Super LED Blinkenator 2000 progress…”

C64 Mini Keyboard kit – a successful user :-)

By reddit user mfriethm. Looks amazing

I sold the first batch of kits mostly on Reddit

Over the past few weeks they’ve been making their way around the globe and I’ve had a lot of happy reports back

Today, Ive been able to relax finally, the Mould works 🙂

Reddit users fantastic gallery

He’s done an amazing job using a silicone mould!

The workflow – make a mould of your uncut keybaord

Cut the keys out, tidy them up

Place keys in mould

Put glue in keys

Place keyboard on top and use screws to align

Voila!

C64 mini Quick doodle for the USB hub mod

Had someone ask, so here’s a quick and rough explanation

You need to make SIX solder connections

First, lift the centre two pins of USB1 on the mini

Second, cut off the plug and solder four pins from the USB hub cable to the bottom of the USB1 connector pads on the PCB

Third, cut off the mini USB of the longer USB cable and create a bare end. Solder two data wires to the lifted pins on the mini’s USB connecote

This then attaches the USB hub in full to the minis processor

And just uses the physical connector on the mini as an extension of one of the sockets on the hub!

Assembly of the C64 Mini working keyboard kit! – PICTURES

Follows a couple of pictures of the install, I’ve also put a couple of videos up on youtube. More will follow

DIODE orientation. Note, make sure they’re all the same way round. One here isn’t!

I’ve put some videos up on youtube about the assembly process – the playlist is linked below

Putting the switches in Wonky for the first round of alignment (smt diodes hand soldered on the original prototype)

Make sure you solder the arduino headers on before you get this far with the switches

Back of board showing Diode legs clipped and only ONE switch pin tacked per switch

USB HUB TO FOLLOW – Pictures shown in blog previously if you need them quickly

Assembly of the C64 Mini working keyboard kit! – TEXT

Some quick steps right now – photos to follow.. Suggest have two tabs open, this one and the other PICTURES tab for reference

Some videos are up on youtube also

Link to Youtube videos

SUMMARY- SOLDER PARTS ONLY IN THIS ORDER

DIODES

ARDUINO HEADERS

SWITCHES

DIODES

  • Cut one leg shorter on the diodes – Use scissors . About 1-1.5cm is good
  • bend the short leg side to a right angle
    • Note the orientation of the diode – The F Key diodes have a diode picture on them. The white bar matches the location of the black bar on the diode.
  • put diode in holes and bend slightly to lock in
  • repeat for all diodes
  • Solder all diodes
  • clip the excess legs back
  • you have a few spare diodes so don’t be afraid to experiment on one or two to get the right bend / fit

ARDUINO HEADERS

  • Probably best to solder these in now before you forget
  • I’ve found it useful to PLACE the arduino on the headers (DO NOT SOLDER YET) so it keeps the headers parallel
  • Make sure the black part of the headers is on the underside of the PCB
  • Solder one pin of each header
  • remove arduino
  • finish soldering

SWITCHES – STEP 1, JUST TACKING IN PLACE

  • Pay attention to orientation
  • don’t worry about straightening the switches at this stage, the goal is to just ‘tack’ them in with a single solder blob to hold them in place. They can be wonky, it doesn’t matter.
  • DO NOT SOLDER MORE THAN 1 PIN OF EACH SWITCH IN ONE GO
    • The switches are easily heat damaged – they become ‘sticky’ and no longer move smoothly if the plastic is melted due to excessive heat. During the entire soldering procedure for the switches, do ONE leg, move to the next switch. when all are done, move back to the first switch and repeat.
    • I’ve damaged only 2 switches this way soldering the prototypes but it can happen if you’re not careful
    • Note that the white part of each switch is asymetrical. One side has a ‘dip’ / inset which guides the switch up and down. the other side is smooth
    • there’s a marking on the PCB to represent this dip / inset.
    • ALL switches go the same way
  • Get a sheet of paper
  • Insert the top row of switches into the PCB
  • Place PCB on sheet of paper and fold paper over the top, tightly
  • flip the PCB over
  • hopefully all the switches stay in place
  • Solder just ONE leg of each switch – any one – say the top right
  • Repeat for Row 2
  • DO NOT FORGET TO SOLDER THE ARDUINO HEADERS IN PLACE
  • Repeat for Row 3
  • DO NOT FORGET TO SOLDER THE ARDUINO HEADERS IN PLACE
  • Repeat for for row 4
  • (Hopefully you didn’t forget to solder the Arduino headers in place?)
  • and finally the space bar

SWITCHES – STEP 2, Straightening

  • This is probably the most important step to getting a good looking keyboard with all the switches aligned. Spend some time getting this right, you have a handful of ‘spare’ switches so now’s the time to make mistakes and fix them whilst there’s only a single solder blob on them
  • I’ll post a few videos shortly but there’s a technique.
  • Hold the board in the air
  • Use your index finger to push in, and slightly down on each switch whilst soldering the previous blob. The goal is to move the whole switch slightly so that it’s slightly at the top, or the bottom of its footprint.
  • when you melt the solder whilst pushing in and down, the switch will move slightly, sometimes you’ll hear a little click or snap as the solder melts
  • repeat this for each switch, pushing in and down slightly – when you look at the final position, there’ll be some of the pad visible at the top of each switch
  • NOW IS THE TIME TO TEST EACH SWITCH FOR SMOOTH MOVEMENT
    • of the 5 keyboards i’ve soldered, I’ve had two defective switches, this is partly the reason why there’s a few extras in the kit
    • of the 5 keyboards i’ve soldered, I’ve broken 3 switches by either over-heating, or trying to remove after putting them in backwards. unless you’ve got a hot air gun, they’re tricky to remove intact, hence check NOW whilst there’s only one solder blob!
  • When you get close to one side of the keyboard, you’ll have to fiddle a bit to keep pushing the switches in the same direction. I’ve found that changing technique a little and ‘flip’ the board lengthwise works. hold the board against yourself and use your thumb to pull the switch down instead of push
  • repeat the alignment technique for ALL switches!

SWITCHES – STEP 3, Final soldering

  • This is the easy / relaxing bit!
  • DO NOT SOLDER MORE THAN ONE LEG OF EACH SWITCH AT A TIME
  • do it by rows, clusters, however works for you, but here’s what worked for me
  • Solder ONE pad of each switch, then move to the next
  • once all switches are done, start from the beginning
  • Solder another pad, etc etc
    • A SMALL CHEAT – You only actually need to solder 3 points. Two on the ‘bottom’ of the switch – these are the electrical contacts. ONE on the ‘top’ – this is for mechanical stability. As you look at the keyboard, the bottom two pins are the important electrical ones. Pick any on the top
  • on my prototype, I found soldering all 6 pins tiring, so on my second version I just soldered 3 and it worked perfect. Up to you, but DONT SOLDER MORE THAN 1 PIN AT A TIME

Arduino

  • Note the orientation of the Arduino by the Small USB socket and a mark on the PCB. Also the silk screen on the PCB will match the letters on the Arduino.
  • these need a little more heat to solder to the pins

Finished Keyboard!!

The Hub

Zx Spectrum Next Blinkenlights …inserts arrived!

Not a huge post this one, just a quick couple of photos

A bit more diffused! Still a bit more work to do
It’s tiny! That’s a British 1p. 8 LED’s
Lots of hand soldered inserts ready for the dev boards.

The inserts fit perfectly into the case also. I’m going to experiment a bit with diffusion methods, surface finishes and colours.

I picked up about 80 of the inserts so plenty to experiment with and get the dev boards done

C64Mini working keyboard – The Butchery Part 2

Mmmm, Mini Cake’s been baked

A quick dry overnight and….It’s a success!.

BEFORE this point (or, worst case, at this point) I’d highly recommend you clean the keyboard thoroughly and go, purchase some clearcote / clear lacquer. I haven’t done it yet but will be spraying my next keyboard to get some longevity on the text and paint……...

The mould’s quite bubbly and not really useful for much other than being a support…But, if done with more care – who knows!, Maybe C64Mini Chocolate keyboards?

Next step, Power Tools!

ROUND 1

Mwahahahaha!

Still not entirely sure if it’s even possible to quickly and repeatedly butcher the C64Mini’s keyboard reliably with good quality.

For doing your own / one off’s, this step, you can take as long as you want. if you plan on doing a few though, taking a day or two individually dremmeling out the keys isn’t my idea of fun.

I do have a CNC – so, worst case I’ll have to learn how to actually use it, then I’d just need to make a protective jig, sit the keyboard on and just CNC the keys out. I’m not really in the mood to spend a few weekends firing that workflow up yet

Failure

The Angle grinder wasn’t really a success…..The blade’s too small and the sanding is going to be too uneven. There’s no way this will work .

Round 2………..

Larger surface area = larger chance of evenness?
Too much vibration

Ok, first thoughts, it seems to work, abeit slowly and with making my hand a bit sore….

new sandpaper should do it

At this point, I figured if I use something soft and large, I could hold the keyboard in place and sand it without hurting my hands so much…..

Puzzled over this one for quite a while till I looked down……..

Found an incredibly inefficient lawn cutting method! – Orbital sanding

Seems to have done the trick!…Pressing down into the grass holds the keyboard in place and also helps resist the vibration of the sander, making it sand more efficiently…………Win Win….Also i’ll patent pend using oribital sanders for domestic grass management.

But……

Poor Lawn

I moved to another bit of the lawn to avoid totally destroying a good bit of the grass…….I found that sanding till you can see the blacks of its eyes…….the lines between the keys seems to work well. At this step, you’ll want to remove as much material as possible to avoid so much processing / sanding later on

Do resist the urge to twist / remove the keys, try to let them come out almost by themselves

oops

At this point I’d realised that an average household lawn is actually quite abrasive..Have a look at the whiteness of the edges of the keys!

Oops! – ah well, this is why i’m experimenting, so you don’t have to. I’m going to run with the theme though -these keys look a bit battle worn now, no going back so i’ll probably add a similar theme to my C64mini case 🙂 will be good to relive the old days of creating scenery and my Warhammer 40,000 airbrushing . never really did play it, just enjoyed hacking up the plastics……..Anyways…

Keep sanding, get as much material off as you can (it will save a LOT of time later)

Once you’ve got them all separated, make sure to lay them all out in order so you can admire all the keyboardy keycappy goodness that’s resulted from the dismemberment of an innocent miniature recreation of an 80’s 8 bit home computer.

Eeeeeeeeeeeeeeeeeeeee

Now, go spending several hours in the garden trying to find the most commonly used letter in the English alphabet!

I’d neglected to factor in the ability of these tiny keycaps to fling themselves a considerable distance in various directions whilst being vibrated several hundred times per second.

Suffice to say, if you’re doing the same thing, try to do it in a location where the floors relatively clean and uncluttered

A colourblind person trying to find a brown keycap in a green lawn that’s not too long, but just long enough to expose the also brown ground beneath……..Yeah, not fun.

After an HOUR of searching though………………..Eeeeeeee….A full keyboard

full c64 mini keyboard keycaps!

Next step – post processing. Removing supports.

This step i’d say is the most important. Sand down a bit the bottom and curves of each key. Get rid of all the burrs, bits, etc. you won’t get much of a chance to do this once they’re stuck. Spend a lot of time on this, cleaning each key, just getting it ‘right’

Mini Mould All filled

Once your keys are all looking great and sanded, smooth – arrange them again into a the keyboard layout. Then, one by one, transfer them into the mould.

you’ll wanna make sure you get this part right 😛

I did them line by line, starting left to right. I also had taken a picture of the keyboard prior to refer to. Check twice, place once……………

Now i’ve realised that I haven’t actually considered how to stick these things in! – i’ll need to go research glue, D’oh! gotta pause this for another week of research and buying bits

C64Mini working keyboard – The Butchery Part 1

Time’s progressing and it’s still taking a long time to obtain a satisfactory print of my CAD keycaps. Some quotes have come in and…they’re quite a bit.

so, time to change focus for the short term to let me actually play games on the mini with all the keyboardy goodness that a working keyboard will allow

So, on to some butchering

The Plan….create a plaster of paris negative of the original keyboard – to hold the keys straight when attaching them.

Step 1 – Print out the case design from my last post

Fits like a glove……..or does it?

Step 2 – realise that I’m making a NEGATIVE and the keyboard needs to sit INSIDE the box, ‘upside down’ Redesign and re-print…

Better

Step 3 – Coat liberally in spray oil… Wife wasn’t too happy that I’d used her pricey artisnal olive oil from our trip to Italy, nothing but the best for my Mini though………

Step 4 – Knock up a batch of pancake batter Plaster of paris…About 50 grams of powder and 60ml water worked for mine….not too viscous.

fill the keyboard case just over 1/2 way to measure what you need

Step 5 – Fill up the mould

Screw on the keyboard – making sure the keys are aligned and straight with the F Keys and wait overnight…

Use the holes either side to top up the plaster so it overflows a little

Give the whole combo a dozen or so short sharp drops / knocks on the table to free up any air bubbles

Mmmmmmm….Keyboard Cake?

C64 Mini – Cutting the existing Keyboard Part 1

Did an attempt at a jig to make hacking up your own keyboard just a little easier….

it’s fairly easy to hack up the existing keyboard into bits….(get hacky thingy, cutty thingy, hack, cut…maybe smooth off burrs if you’re feeling artsy)

Getting the brand new hacked up bits of plastic that once looked like a keyboard to sit straight on the switches and resemble the previous keyboard resemblance …..not so much.

Turns out that making things ‘straight’ is hard……..so, some ideas

3D design and print new keycaps with locking mechanisms that work with my chosen keyswitches (still onging, it’s been MONTHS of work)

My first other idea…….. create a form to fill with plaster of paris, press the plastic full keyboard into that form, leave to set…

Remove keyboard and admire a perfect negative image of the keyboard.

Two things that could be done with this

Use that plaster of paris as a form to create resin keycaps (without any lettering) – I’m working on that!

second – it can be used as a perfect ‘form’ to sit the newly butchered keycaps in, fill with epoxy glue, sit keyboard PCB on top and let the keycaps become glued on, all nice and straight like!

it’s fairly easy to export the keyboard PCB outline from EasyEDA as a DXF then import to Fusion, extrude and…voila!

But…There’s an ever so tiny mistake in the image above

That’s the printed version…The holes line up great!

But….

Yeah, the keyboard should be face down!, D’oh!

i’ll see if the snips’ll work

The other thing….

Fits like a glove….

Nice and snug – Note the top row of keys is level…..

Some small design work needed but the idea has promise!. I just need to re-jig the hole widths a little to accommodate the angle of the keyboard better!

I’ve purchased another couple of C64 Minis so that I can improve this jig more. I’m not quite certain where the keys will ‘fall’ once they’re seperated from the base of the plastic moulding.

The more I think about it, i’m thinking that there could be a shedload more work in this jig – one ‘saving grace’ though – due to the way injection moulding works – there’s a slight taper on the existing fake switches. And, I suspect that the rear of them has been modded so that they’re almost perpendicular to the base. this will help the whole mould ‘pop off’ the injection machine…

That also helps me with this jig as it really means that, at the base of the keys, all the keys seem to have the same uniform rear rising, almost perpendicular taper and front curving taper. kinda like the below diagram

That could turn the whole change into just re-extruding the jig key holes at the 8 degree angle of the keyboard as above……..