When you buy a 3D printer, sometimes you search for ages to find ‘anything’ to print, just to actually use the printer.
Other times, you spend ages searching for a suitable coupling device to mount a pool pump with a roughly 1/2 inch inner bore and 20mm ish unknown thread to a 31ish mm diameter INTEX style corrugated hose……..
I’ve done both.
I bought some solar pool heating mats to make the small 8 foot paddling pool a little toastier and less ‘my nipples are so stiff , they could cut glass’ cold……
A few months ago, I purchased a cheap pump from Aliexpress – and after a few hours trying to find and purchase a fiting to hook it to the paddling pool and my Intex solar mats.. I realised I have a 3D printer! (well, many of them actually)..
So, Quickly knocked up this oddity in Fusion
Fits well, one is already attached
I’ve no idea what the thread is….So decided to set the inner hole just big enough to catch the thread…To screw it on, I use my hot air gun to heat up the inner hole so that it gets soft, then screw on the adaptor. leave it to go cold, then unscrew, add PTFE Tape to the threads, screw it back on and, voila, a nice, waterproof adaptor.
I’ll test the thing soon (it’s warm here)………But, during typing this, I’ve noted that the Bestway pump is 330 Gallons per hour – approximatley 1500 Liters per hour
The Aliexpress pump is about half that, D’oh!….
BUT – where i’m hoping to create an efficiency – the Bestway pump has a filter built in, which quite severely restricts the flow, this pump willl either boost that, or i’ll split the 4 mats into two circuits!
Used to love 90’s board games, and, as shown earlier, I fancy getting into Heroquest again…..But, NOT at the prices it’s fetching on eBay currently.
There’s a LOT of stuff to find out there, and more than enough to be able to fully re-create the whole game yourself.
BUT, as always, some of the things I’ve found, don’t really do it for me, so….My first in probably many…..A better Heroquest ‘Secret Door’ Tile….
Took some creative liberties with the door design, but there’s no way the printed tile can translate properly to 3D space unless someone has a particular wall height in mind….
This is just a merging of two other things found on Thingiverse, it’ll be a while before my organic 3D modelling skills get to the level needed to create the above from scratch
Did an attempt at a jig to make hacking up your own keyboard just a little easier….
it’s fairly easy to hack up the existing keyboard into bits….(get hacky thingy, cutty thingy, hack, cut…maybe smooth off burrs if you’re feeling artsy)
Getting the brand new hacked up bits of plastic that once looked like a keyboard to sit straight on the switches and resemble the previous keyboard resemblance …..not so much.
Turns out that making things ‘straight’ is hard……..so, some ideas
3D design and print new keycaps with locking mechanisms that work with my chosen keyswitches (still onging, it’s been MONTHS of work)
My first other idea…….. create a form to fill with plaster of paris, press the plastic full keyboard into that form, leave to set…
Remove keyboard and admire a perfect negative image of the keyboard.
Two things that could be done with this
Use that plaster of paris as a form to create resin keycaps (without any lettering) – I’m working on that!
second – it can be used as a perfect ‘form’ to sit the newly butchered keycaps in, fill with epoxy glue, sit keyboard PCB on top and let the keycaps become glued on, all nice and straight like!
it’s fairly easy to export the keyboard PCB outline from EasyEDA as a DXF then import to Fusion, extrude and…voila!
But…There’s an ever so tiny mistake in the image above
That’s the printed version…The holes line up great!
But….
Yeah, the keyboard should be face down!, D’oh!
i’ll see if the snips’ll work
The other thing….
Fits like a glove….
Nice and snug – Note the top row of keys is level…..
Some small design work needed but the idea has promise!. I just need to re-jig the hole widths a little to accommodate the angle of the keyboard better!
I’ve purchased another couple of C64 Minis so that I can improve this jig more. I’m not quite certain where the keys will ‘fall’ once they’re seperated from the base of the plastic moulding.
The more I think about it, i’m thinking that there could be a shedload more work in this jig – one ‘saving grace’ though – due to the way injection moulding works – there’s a slight taper on the existing fake switches. And, I suspect that the rear of them has been modded so that they’re almost perpendicular to the base. this will help the whole mould ‘pop off’ the injection machine…
That also helps me with this jig as it really means that, at the base of the keys, all the keys seem to have the same uniform rear rising, almost perpendicular taper and front curving taper. kinda like the below diagram
That could turn the whole change into just re-extruding the jig key holes at the 8 degree angle of the keyboard as above……..
Just over a year ago I purchased my Creality Ender 3 Pro…an absoloute steal at about £140 after discounts and Topcashback special offer at the time.
I was having so much ‘fun’ with my Wanhao Duplicator 9 that I didn’t open the box for nearly 1/2 a year. and I only fired the thing up a few months ago!
I have to say, I’m impressed. The printer deserves its rabid fanbase following. It printed flawlessly out of the box without any setting up.
It’s surprising the difference having a reliable ‘work horse’ printer makes to the hobby. I need a bit – I just go print it. no faffing about with levelling and bed adhesion.
Till it doesn’t…….
OOps!
Note, if your previously reliable printer seems to under-extrude, even on known great filament – try the extruder arm.
Something seemed ‘off’ when printing standard stuff – almost overnight the printer just seemed to under-extrude, not be reliable and, well, become more like my Wanhao D9 (a bit crap)
Even bizzarely, the printer would print OK over to the left, but under-extrude to the right. Took an hour to diagnose this! When the head was over to the right – it would pull the mechanism slightly which dislodged the arm enough to slip the filament.
Luckily, This extruder tech hasn’t moved in years…….An unassembled, missing parts kit I picked up off facebook a couple of years ago (syntek, sintek or something similar) which itself was a few years old had just the part..(which complete, looks identical to this Aliexpress one …..
It’s taking way too long, but I think I now have the lettering ‘just right’ – at least on the screen.
This was printed a bit too hastily at 0.08mm layer height on an Ender 3 printer. I’d used a brand new roll of untested filament and didn’t bother changing any settings. – it’s dimensionally ‘spot on’..
I’ve purchased a 0.2mm nozzle for my next trial , it’ll take ages but i’m hoping that those fine details on the characters come out a little better.
Why it’s taking so long……..
I’m learning as I go. I’m ‘tracing’ letters i’m finding on the net, creating them as a new sketch along the whole rows. There’s 4 differently angled rows so each needs to be extruded in a different direction to ‘cut’ the key.
This first run matches the C64 keyboard font as close as I can get. I’ll then ‘archive’ this layout for future use and create a second ‘3D print’ version.
This version will forgo the accuracy of the font and make features much wider, more rounded to allow the characters to come out better once 3D printed. The complex ones like ‘run stop’ won’t ever come out great on a standard filament printer, but the letters already come out pretty good…that’s a win for me!
a full keyboard!
The full keyboard is above – and you can see part of one of the adaptors i’m designing to click them onto the keyswitches. each keycap is hollow. that small grey part will sit inside the keycap
Where the time’s being spent…..
And finally – part of what’s taking so long.
Each key/character is taking on average about 1/2 an hour to an hour to design. Lets say 45 minutes.
65 keys to label
That’s a LOT of minutes…and i’m only getting an hour or two every few nights – a good solid weekend ‘free’ would be great and have this sorted.
On top of that labelling (which is now finished) I have to try to make each letter more legible and easier to 3D print. Generally that means ‘bevels’ everywhere – you can see above that i’ve done ‘Run Stop’ and ‘Shift Lock’ but SHIFT is still to do….it’s not as easy either as ‘copy, paste’ the Shift from Shift lock – that’s a different sized font on a different sketch plane.
Just one example of the issues I’m seeing…The Letter B
The Letter B – trying to create a fillet – rounding off the edges
The Letter B above has an issue with the geometry – just by the 0.1 – there’s a part internally up towards the arrow that shouldn’t be there – that’ll could play havoc with a slicer when set to really small layer heights
B – Alternate view
But, the Fillet also creates a zero thickness surface which looks unsightly and will probably cause issues if I don’t correct it now
So, Back to the sketch
Letter B – The Sketch
As you can see, i’ve kept the characters with few (if any) constraints. this way has been easier to freehand and eyeball as I can drag stuff around till it looks right by ‘locking and unlocking’ lines. most constraints used to create right angles, etc have been removed after to help with the process of making it 3D
Anyways, the ‘issue’ with the fillet seems to be around the place where the two control point splines meet – i’ve highlighted one in blue above.
I re-coincide each spline (have found deleting and un-deleting works, as well as hitting coincident )
That change should hopefully roll back up the timeline to allow me to make the fillet work.
To Create the key lettering I the character by 1mm elsewhere in my workspace, then move it to over the key.
Then extrude the face of the character into the key and ‘cut’ ….
this may seem odd, but it’s a really quick and easy way of consistently creating cutouts on a row of keys and making quick changes later.
That didn’t work, so, jump into surface mode – delete the entire inner arc of the B. Re-create the arc as a ‘patch’. Stitch together the lower part of the B. Then stich the whole keycap, then re-apply fillet and…..Voila…..3/4 an hour later, one filleted B…And a learned workflow if the same thing happens on another key!
Note, as-is, the keyboard fonts are a bit innacurate. I’ve sized everything based upon the smallest characters that need to fit – i.e. run stop, etc. The individual letters could be bigger – but any bigger and they’d look too big compared to those……….
Next steps,
DFM – Design for manufacture.
Just because you design a 3x2mm hole, doesn’t mean it’ll print at 3×2. Generally Filament printers do outer perimeters a little larger, inner perimeters a little smaller. The first few tests i’ve done now prove this. so, After a few months of ‘out of the box working’ on my Ender, I’ve finally gotta bite the bullet and calibrate it. The plan is to create an offset in the CAD file so that I still design the holes accurately based on measurement, BUT, can add a accurate ‘calibration figure’ Fudge figure to make them a little larger or smaller as necessary.
Right now my Printer is doing slightly oval prints – which should be easy enough to sort out if my D9 Adventures were anything to go by
and being a little dissapointed that my D9 was just too big to fit inside, I’m probbaly going to knock up a small stacker with my 3020 and ender 3! ………..when i’ll actually use all this crap for making stuff for the kids to play with, who knows!, still, the ‘possibilities’ are keeping me sane right now!
Well, after endless weeks of frustration with the D9 and extrusion issues, I’ve gone and done a few things
Purchased a silly amount of ‘spare parts’ at ridiculous prices from random chinese websites – it’s like Christmas! every day!, there’s steady stream of small boxes and packages arriving. I’ll have enough bits to build a couple of spare printers soon…….